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The dynamics of sheared inelastic-hard-sphere systems is studied using nonequilibrium molecular-dynamics
simulations and direct simulation Monte Carlo. In the molecular-dynamics simulations Lees-Edwards bound-
ary conditions are used to impose the shear. The dimensions of the simulation box are chosen to ensure that the
systems are homogeneous and that the shear is applied uniformly. Various system properties are monitored,
including the one-particle velocity distribution, granular temperature, stress tensor, collision rates, and time
between collisions. The one-particle velocity distribution is found to agree reasonably well with an anisotropic
Gaussian distribution, with only a slight overpopulation of the high-velocity tails. The velocity distribution is
strongly anisotropic, especially at lower densities and lower values of the coefficient of restitution, with the
largest variance in the direction of shear. The density dependence of the compressibility factor of the sheared
inelastic-hard-sphere system is quite similar to that of elastic-hard-sphere fluids. As the systems become more
inelastic, the glancing collisions begin to dominate over more direct, head-on collisions. Examination of the
distribution of the times between collisions indicates that the collisions experienced by the particles are
strongly correlated in the highly inelastic systems. A comparison of the simulation data is made with direct
Monte Carlo simulation of the Enskog equation. Results of the kinetic model of Montanero et al. �J. Fluid
Mech. 389, 391 �1999�� based on the Enskog equation are also included. In general, good agreement is found
for high-density, weakly inelastic systems.
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I. INTRODUCTION

In rapid granular flows �1,2�, the mean flight time of the
particles in the granular material may be large compared to
the contact time between particles. Interparticle interactions
are modeled as “collisions,” which play a key role in trans-
ferring momentum and other properties through the system.
Granular materials in this flow regime can then be repre-
sented by a collection of inelastic hard spheres �3,4�.

The simplicity of the inelastic-hard-sphere model lends
itself well to theoretical analysis. In particular, the methods
developed for the kinetic theory of equilibrium gases have
been applied to rapidly sheared inelastic-hard-sphere sys-
tems. The seminal paper by Lun et al. �5� marked the start of
“complete” kinetic theories capable of predicting both the
kinetic and collisional properties. The Boltzmann equation
has featured predominantly in the theory of granular gases
due to its simpler form �e.g., see Ref. �6��. However, the
most successful molecular kinetic theory to date is the re-
vised Enskog theory �7�, an extension to the Boltzmann
equation for dense systems. The Enskog theory assumes un-
correlated particle velocities and currently relies on a static
structural correlation factor from elastic fluids �8�. Approxi-
mate theories beyond the Enskog theory, such as ring theory
�9�, have been developed and applied to granular systems.
However, due to their complexity, their use has been limited
�e.g., cooling, rare granular gases�.

Common to most kinetic-theory solutions is the assump-
tion of a steady-state spatially uniform distribution function.
Provided scale separation exists, as in the case of elastic

fluids, fluctuations from this steady state can be accounted
for using the Chapman-Enskog expansion �10�. To solve the
Enskog equation, approximations typically begin by taking
moments of the kinetic equation with respect to the density,
velocity, and products of the velocity. These moment equa-
tions are used to solve for the parameters of an expansion or
model. Typically, only terms up to the granular “tempera-
ture,” or isotropic stress and rotation terms �11�, are included
as field variables. Anisotropic stresses can still be predicted
from such a theory �12�. Indeed, attempts have been made to
include the full second-order velocity moment �13� as a hy-
drodynamic variable to improve theoretical predictions.

Grad’s method �14� solves Enskog theory using an expan-
sion of the distribution function about a reference state. This
has been applied to polydisperse granular systems �4� and,
unlike perturbative solutions, does not require assumptions
on the strength of the shear. Kinetic models are a powerful
method of generating simplified kinetic equations which re-
tain key features of the original. Montanero et al. �15� solved
an improved Bhatnagar-Gross-Krook �BGK� kinetic model
�16,17� for inelastic systems. The improved BGK model ap-
proximates the collisional term of the kinetic equation using
the first two velocity moments, which correspond to the col-
lisional stress and energy loss, and a general relaxation term.
This leads to a simplified kinetic equation. The solution in
the low-dissipation limit is particularly attractive, as it pro-
vides estimates for the system properties without requiring
numerical solution and compares favorably to direct simula-
tion Monte Carlo �DSMC� results.

DSMC �18� is a numerical simulation technique used to
directly solve the Boltzmann equation without requiring fur-
ther approximations. This can then be used to rapidly test
solutions of the kinetic equation. The method has already*leo.lue@manchester.ac.uk
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been extended to the Enskog equation for homogeneously
sheared inelastic systems �15,19,20�.

While kinetic theories do offer insight into the behavior of
granular materials, they are necessarily approximate. The
Boltzmann and Enskog kinetic theories do not include veloc-
ity or dynamic structural correlations. Ring theory �9� is ca-
pable of including particle correlations. However, further ap-
proximations are required to make the resulting theory
tractable. These correlations are present in moderately dense
to dense systems of elastic particles, but they are enhanced
by the clustering in inelastic systems �21,22�. The failure of
Boltzmann and Enskog theories at high densities is therefore
expected, even for elastic-hard-sphere systems. On the other
hand, nonequilibrium molecular-dynamics �NEMD� simula-
tions �3,23� can, in principle, give “exact” results for driven
inelastic-hard-sphere systems �24,25�. These simulations can
be used to validate kinetic theories against the underlying
model. Initial studies of sheared granular systems used mov-
ing boundaries �3,26�, such as rough walls, to introduce en-
ergy into the system. Due to the computational limitations,
the wall separation is typically on the order of a few particle
diameters, and wall effects dominate the simulation results.
For large system sizes, shear instability is observed �27�.
Consequently, the results for wall-driven simulations are
strongly dependent on system size.

Another manner by which to introduce shear in nonequi-
librium molecular dynamics is the Lees-Edwards �28� or
“sliding-brick” boundary conditions. Simulations of
inelastic-hard-sphere systems using Lees-Edwards boundary
conditions �23,29–32� lessen the influence of wall effects, by
eliminating the surface of the system, but these simulations
still introduce shear in an inhomogeneous manner, which
may lead to clustering instabilities �33� for larger systems.

While there are many interesting similarities between
elastic-hard-sphere fluids and driven inelastic-hard-sphere
systems, there are key differences. One is the tendency of
inelastic hard spheres to form clusters and patterns, while
elastic-hard-sphere fluids tend to remain isotropic. Another
example is the velocity distribution. The velocity of elastic
hard spheres is governed by the Maxwell distribution, which
is isotropic and Gaussian. The velocity distribution of flow-
ing inelastic hard spheres is, in general, anisotropic �34� and
can show significant deviations from the Gaussian distribu-
tion, especially when there is clustering.

In this work, we examine the properties of sheared
inelastic-hard-sphere systems using nonequilibrium event-
driven molecular-dynamics simulations with the Sllod algo-
rithm combined with Lees-Edwards boundary conditions.
Part of the purpose of this work is to investigate, at a particle
level, the differences between the behavior of inelastic and
elastic �equilibrium� hard-sphere systems. Another purpose
of this work is to provide simulation data which can be used
to test kinetic-theory predictions for the properties of these
systems. A previous study by Montanero et al. �35� already
compared two-dimensional �2D� and three-dimensional �3D�
simulations of binary inelastic hard spheres against DSMC
simulations of Enskog theory. They found good agreement
over the range of mass ratio, size ratio, and inelasticity stud-
ied. However, the clustering instability present in systems of
large numbers of highly inelastic particles appears to limit

the range of inelasticity studied. As mentioned previously,
kinetic theories for sheared granular materials are typically
developed for the case where the system is spatially uniform
and homogeneously sheared. One of the difficulties with
comparing the predictions of the kinetic theory with the
simulation data for sheared granular materials is the forma-
tion of clusters, which makes comparison between the two
problematic. As a consequence, care is taken in this work to
ensure that the systems remain homogeneous, and strongly
inelastic systems can be accessed. In these simulations, we
investigate the collision statistics, such as velocity distribu-
tions, collision angles, time between collisions, and mean
free paths, of sheared inelastic hard spheres. In addition, we
examine the variation in various bulk properties of the sys-
tem, such as the viscosity, mean kinetic energy, and stress,
with the packing fraction and coefficient of restitution of the
particles. We also investigate the correlations between the
collisions, which are neglected in most kinetic-theory ap-
proaches. The remainder of this paper is organized as fol-
lows. In Sec. II, we describe the details of the granular-
dynamics simulations. In Sec. III, we describe the details of
the DSMC simulations. In Sec. IV, we present the results of
our simulation work, including a comparison with the pre-
dictions of Enskog theory. Finally, a summary of the main
findings is provided in Sec. V.

II. SIMULATION DETAILS

Nonequilibrium granular-dynamics simulations were per-
formed on systems of inelastic hard spheres of diameter �
and mass m. The system is sheared in the y plane in the x
direction with a constant strain rate of �̇ using the Sllod
algorithm �36�. In this method, shear is applied through the
use of the Lees-Edwards sliding-brick boundary conditions
�28,36� and the velocity is transformed relative to a linear
velocity profile. The equations of motion are

dri

dt
= vi + yi�̇êx, �1�

dvi

dt
=

Fi

m
− v̄y,i�̇êx, �2�

where Fi is the force acting on particle i, ri is the position of
particle i, vi is the so-called peculiar velocity of particle i, yi
is the y coordinate of particle i, v̄y,i is the y component of the
peculiar velocity of particle i, êx is a unit vector pointing in
the positive x direction, and �̇ is the strain rate.

The peculiar velocity of a particle i is defined as the dif-
ference between its laboratory velocity vi and the local
streaming velocity �the velocity of the local streamline�. For
simple shear, it is given by the linear transformation

vi = vi − yi�̇iêx.

The peculiar velocity is related to the dispersion of the par-
ticles from the average streamlines of the flow. The Sllod
equations of motion are particularly convenient as the pecu-
liar velocity is naturally recovered without the need for a
separate coordinate transformation. They allow the possibil-
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ity of thermostating the system �37� and the study of time
dependent shear flows.

In a hard-sphere system, the spheres do not experience
any force between collisions. The equations of motion can
then be solved analytically for the trajectories of the spheres
between collisions. The evolution of the position and pecu-
liar velocity of particle i in the system between collisions is

ri�t� = ri�t0� + �vi�t0� + yi�t0��̇êx��t − t0�

= ri�t0� + vi�t0��t − t0� ,

vi�t� = vi�t0� − v̄y,i�t0��̇�t − t0�êx. �3�

When a particle undergoes a collision, it experiences an im-
pulse which alters its velocity. These collisions are instanta-
neous and only occur between pairs of spheres �i.e., there are
no three- or higher-body collisions�. The inelasticity of the
hard spheres is characterized by the coefficient of restitution
�. This is defined through the amount of kinetic energy �E
lost on collision,

�E =
m

4
�1 − �2��r̂ij · vij�2, �4�

where vi is the velocity of particle i immediately before col-
lision, vij =vi−v j, and r̂ij =rij / �rij� is the unit vector pointing
from the center of particle j to the center of particle i.

Each collision preserves the total momentum of the par-
ticles involved. Therefore, the change in velocities for a col-
liding pair of spheres i and j is given by

vi� = vi − 1
2 �1 + ���r̂ij · vij�r̂ij ,

v j� = v j + 1
2 �1 + ���r̂ij · vij�r̂ij , �5�

where the primes denote postcollision values of the particle
velocities.

The coefficient of restitution � is, in general, a function of
the relative velocity on collision. Viscoelastic models that
incorporate this have been very successful in describing real
systems such as steel spheres �38�. A common approximation
in kinetic theory is to assume a constant coefficient of inelas-
ticity, as this greatly simplifies the collision integrals while
the basic physics is not significantly altered. A constant co-
efficient of restitution is used in this work to facilitate com-
parison against kinetic-theory results.

One concern for a system with a constant coefficient of
restitution is the phenomenon of inelastic collapse, where an
infinite number of collisions occur between several spheres
in a finite interval of time. Event-driven simulations will fail
in the event of a single collapse event. In two dimensions,
freely cooling inelastic-hard-sphere systems undergo �39� in-
elastic collapse with coefficient of restitution as high as 0.59.

Inelastic collapse is rare in sheared systems �40� and is
increasingly rare in higher dimensions. However, a near-
collapse situation can still cause a simulation to break down
if the machine precision is not sufficiently high to resolve a
rapid series of successive collisions. In the simulations per-
formed in this work, no partial or full collapse events were
found, even for dense and highly inelastic systems.

The simulation algorithm that we employ is a generaliza-
tion of the standard event-driven molecular-dynamics algo-
rithm for hard spheres �41� �for more details, see Ref. �42��.
The main modifications are the use of the sliding-brick
boundary conditions �28� and the Sllod equations of motion.

Unlike the elastic-hard-sphere system, the inelastic-hard-
sphere system has no intrinsic time scale. The applied strain
rate �̇ sets the time scale of the system. Therefore, there are
only two relevant dimensionless parameters: the density ��3

and the coefficient of restitution �. In this work, the density
is varied from ��3=0.4 to 0.9, and the coefficient of restitu-
tion is varied from �=0.4 to 0.9.

Because the shear is imposed through the boundary con-
ditions, the strain rate is only fixed at two points, separated
by the entire height of the simulation box. In low-density
systems with large numbers of particles, clustering occurs
�27�. This leads to a local variation in the strain rate in the
system, and, consequently, the system will not be homoge-
neously sheared. At the onset of clustering, the size depen-
dence of the system properties changes from the typical N−1

scaling to a different behavior. To illustrate this, the mean
free time of sheared inelastic hard spheres with �=0.4 is
shown in Fig. 1. These simulations were performed in a cu-
bic simulation box where the system size was varied while
holding the density constant. The “break” in the curves for
the lower densities indicates the presence of cluster forma-
tion in the larger systems. The same general behavior mani-
fests in all system properties and is relatively easy to detect.

Kinetic-theory studies of sheared inelastic systems typi-
cally assume that the system is homogeneous and uniformly
sheared, with a linear velocity profile. This makes the com-
parison between granular-dynamics simulations and the ki-
netic theory problematic. To allow comparison with these
theories, we ensure that the systems remain homogeneous
during the course of the simulations. In order to avoid the
clustering regime while still maintaining a sufficiently large
system size to provide proper statistics, the x, y, and z di-
mensions of the simulation box are set to the ratio of
14.4:1:1, and a total of N=7200 spheres are used. This en-
sured that the systems remained homogeneous for all condi-

FIG. 1. The system size dependence of the mean free time be-
tween collisions, tavg, for simulations of a sheared inelastic-hard-
sphere system with �=0.4 in a cubic box with sides of length Lbox.
The number of particles is N=256 in the smallest system, and N
=10 976 in the largest.
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tions �i.e., number of particles, coefficient of restitution, and
density� that were examined in this work.

At the beginning of the simulations for each set of condi-
tions, the spheres are arranged in a face-centered cubic lattice
at the appropriate density. The velocities of the spheres are
initially assigned from a Maxwell-Boltzmann distribution.
The simulations are then run for an “equilibration” period of
107 collisions. Afterward, system property data are collected
over at least ten production runs, each lasting 107 collisions.
The uncertainties of the data are estimated from the standard
deviations of the results from these separate runs. In Sec. III,
we describe the DSMC simulations performed.

III. DSMC SIMULATIONS

The DSMC method was used to numerically solve the
Enskog equation. This technique has been described in detail
previously �15,19� and is only covered briefly here. The pe-
culiar velocity distribution function f is represented by using
a collection of N sample velocities or “simulated” particles:

f�v,t� = N−1�
i=1

N

�3�v − vi�t�� , �6�

where vi�t� is the peculiar velocity of sample i at time t. At
each time step �t, the samples are evolved according to the
Sllod dynamics �see Eq. �2��. The samples are then tested for
collisional updates. At each time step, 1

2NPmax
�c� pairs of

samples in the collection are selected, where Pmax
�c� is a pa-

rameter of the DSMC simulation. The probability that a col-
lision between a pair of samples i and j will be executed is
proportional to

Pij
�c� = 4��2	��k̂ · vij�
�k̂ · vij��t , �7�

where k̂ is a randomly generated unit vector, vij =vi−vi

−��̇k̂yêx is the relative laboratory velocity, 
 is the Heavi-
side step function, and 	 is the radial distribution function at
contact. In this work, the value of 	 is taken from the
Carnahan-Starling �8� equation of state for elastic hard
spheres, which is given by

	 =
1 − �/2
�1 − ��3 , �8�

where �=���3 /6 is the solid fraction.
To optimize the simulation, the quantity Pmax

�c� is chosen to
be the maximum observed value of Pij

�c�. This is estimated
and updated during a simulation if Pij

�c� exceeds Pmax
�c� . The

probability that a collision between samples i and j is ex-
ecuted is Pij

�c� / Pmax
�c� , and, if the collision is accepted, the ve-

locities are updated using Eq. �5� with rij =−�k̂.
For the results presented here, N=1372 and �t is selected

such that 1
2NPmax

�c� �5. The distribution functions are equili-
brated for 106 collisions, and then results are collected and
averaged over ten runs of 107 collisions.

IV. RESULTS AND DISCUSSION

In this section, we present our simulation results for the
properties of homogeneously sheared inelastic-hard-sphere

systems. These results are compared against DSMC simula-
tion of the Enskog equation to test the Enskog approxima-
tion. We also include the results from the kinetic model
solved by Montanero et al. �15,43�. This theory is particu-
larly interesting as it provides analytical results in the limit
of small strain rates, along with simple expressions that ap-
proximate DSMC results. Without the small-strain-rate ap-
proximation, a more accurate numerical solution of the
model is available �15�. However, the DSMC simulations
already provide accurate Enskog theory results without fur-
ther approximation.

A. Velocity distribution

The kinetic energy of the system is defined through the
fluctuations of the velocity of the particles from their respec-
tive local streaming velocity,

E =
1

2�
k=1

N

mv̄k
2. �9�

The mean kinetic energy is therefore a measure of the veloc-
ity dispersion present in the system. In analogy with elastic
�equilibrium� hard-sphere fluids, a kinetic �or “granular”�
temperature T is typically introduced through the relation

3
2NkBT � �E	 , �10�

where N is the number of particles in the system, and kB is
the Boltzmann constant. Although the physical significance
of the granular temperature has been a subject of some con-
troversy �12�, the concept has proved effective in the theo-
retical modeling of the properties of granular materials.

The granular temperature of the sheared inelastic-hard-
sphere system at steady state is plotted in Fig. 2. The sym-
bols are the results of our molecular-dynamics simulations,
the dotted lines are the suggested expressions of Montanero
et al. �15�, and the solid lines are the DSMC simulation
results. From the figure, it can be seen that the granular tem-
perature of the system decreases with decreasing values of

FIG. 2. Variations in the mean kinetic energy per particle with
density for �i� �=0.4 �circles�, �ii� �=0.5 �squares�, �iii� �=0.6
�diamonds�, �iv� �=0.7 �up triangles�, �v� �=0.8 �left triangles�,
and �vi� �=0.9 �down triangles�. The dotted lines are the suggested
expressions of Ref. �15� and the solid lines are DSMC results.
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the coefficient of restitution. The particles in a strongly in-
elastic system rebound less from collisions. Therefore, colli-
sions in the direction of shear can quickly settle a particle to
the velocity of the streamline. In addition, the motion of the
particles off the streamline �in the y and z directions� are
more quickly dissipated by collisions with particles on
neighboring streamlines. Consequently, strongly inelastic
systems have a greater tendency to follow the streamlines of
a flow.

At low densities, the granular temperature increases with
decreasing particle densities. The collisions between par-
ticles transmit information regarding the mean velocity of
the flow. For very-low-density systems, the collisions are
relatively rare events, and between collisions a particle will
generally travel on trajectories that deviate from the stream-
lines, thus contributing to the granular temperature. With in-
creasing density, a particle will become increasingly “caged”
by surrounding particles, experiencing more collisions that
will keep it on a particular streamline. Therefore, one expects
that the temperature should generally decrease with increas-
ing particle density. However, the simulation data indicate
that the temperature of the system does not depend mono-
tonically with the density, and a minimum is observed at a
relatively high density for all the systems considered. The
minimum becomes more pronounced as the coefficient of
restitution decreases.

We note that in dense experimental granular systems, par-
ticles mainly remain in contact with each other and interact
by rolling or sliding past one another, rather than through
collisions. In this regime, soft-sphere models �44�, as op-
posed to hard-sphere models, are more representative. Con-
sequently, the applicability of the simulation results for the
inelastic-hard-sphere system at high densities to experimen-
tal granular systems should be considered with care.

In general, Enskog theory and the solution of Montanero
et al. �15� provides a fairly accurate description of the simu-
lation results. However, there is a large discrepancy for high
values of the inelasticity and density. In addition, Enskog
theory does not capture the presence of the minimum in the
temperature with respect to the density.

Equilibrium fluids obey the equipartition theorem: energy
is, on average, distributed evenly between all degrees of free-
dom. In driven granular systems, however, this has been
shown to not be the case �45�. Figure 3�a� shows the varia-
tion in �v̄y

2	 / �v̄x
2	 with density, and Fig. 3�b� shows the varia-

tion in �v̄z
2	 / �v̄y

2	. The symbols are the results of our
molecular-dynamics simulations, the dotted lines are the pre-
dictions of the theory of Montanero et al. �15�, and the solid
lines are the DSMC simulation results. If the system obeyed
the equipartition function, then both these ratios would be
equal to 1. The dispersion of the velocity parallel to the
direction of shear �i.e., the x direction� is consistently larger
than that perpendicular to the shear, which is unsurprising as
this is the direction in which energy is inputted to the system.
The asymmetry increases with decreasing density and with
decreasing values of the coefficient of restitution. It is inter-
esting to note, however, that the fluctuations in the velocity
in the y and z directions are nearly equal.

The low-dissipation theory of Montanero et al. �15�
strongly underpredicts the anisotropy in the velocity disper-

sion. DSMC results provide a better description but still de-
viate significantly from the simulation results at low values
of the elasticity.

The theory of Montanero et al. �15� truncates terms within
the second velocity moment of the collision integral and all
higher terms. The full second moment could be included to
improve predictions. However, as this is primarily a collision
term it is unlikely to improve the predictions of the velocity
anisotropy.

The kinetic model could be expanded by relaxing to a
generalized Gaussian distribution, as in the ellipsoidal statis-
tical model. The extra degrees of freedom in the model
would then be solved for by the inclusion of a full second
velocity moment balance. This might still prove tractable and
improve the predictions for the velocity-dispersion aniso-
tropy.

For equilibrium systems, such as elastic-hard-sphere flu-
ids, the velocity distribution is exactly given by the
Maxwell-Boltzmann distribution. However, granular materi-
als have been shown to deviate from this distribution
�34,46,47�. The simulation data for the distributions of the
single-particle x, y, and z components of the peculiar veloc-
ity are shown in Fig. 4. The peculiar velocities are reduced
by their mean-square values �vi

�= v̄i / �v̄i
2	1/2, for i=x, y, and

z�. The distributions are, in general, well described by an
anisotropic Gaussian distribution. For the highly inelastic
systems, the distributions display a slightly enhanced high-
velocity tail. This is most evident in the direction of shear
�i.e., the x direction�.

For simulations in a cubic box at the onset of clustering in
the system, the peculiar velocity distributions in the y and z
directions can be shown to develop strong high-velocity tails.
In this case, the bulk of the particles are within a dense
low-strain-rate zone, while the remainder reside in a rare
high-strain-rate and granular-temperature region. The par-
ticles in the high-strain-rate region lead to a high-velocity
tail. Further studies on clustering effects are currently under-
way.

FIG. 3. The ratios of the mean-square velocity �a� in the y and x
directions and �b� in the z and x directions for sheared inelastic-
hard-sphere systems with �i� �=0.4 �circles�, �ii� �=0.5 �squares�,
�iii� �=0.6 �diamonds�, �iv� �=0.7 �up triangles�, �v� �=0.8 �left
triangles�, and �vi� �=0.9 �down triangles�. The dotted lines are the
suggested expressions of Ref. �15�, and the solid lines are the
DSMC results.
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B. Stress tensor

In this section, we examine the stress tensor. The time-
averaged value of the stress tensor �P	 for a hard-sphere
system is given by �48�

�P	 =
1

V
�

collisions

 
�tc�
k=1

N

mvkvk + �r̂ijm�vi� , �11�

where �tc is the time interval between two consecutive col-
lisions, �vi is the change in velocity of sphere i on collision,
 is the time over which the stress tensor is averaged, and V
is the total volume of the system. The first summation runs
over all collisions that occur during the time , and the in-
dexes i and j refer to the spheres undergoing the collision.
The index k runs over all particles in the system.

The pressure p of the system, which is defined as

p � 1
3 ��Pxx	 + �Pyy	 + �Pzz	� ,

is plotted in Fig. 5�a�. As expected, the pressure increases as
the density of the system increases. It also increases with
increasing coefficient of restitution due to the rise in granular
temperature. The Enskog theory requires, as input, the colli-
sion rate between particles as a function of the density. This
is typically given by the equation of state for elastic-hard-
sphere fluids through the compressibility factor. The com-
pressibility factor Z, defined as

Z �
p

�kBT
,

is plotted for the sheared inelastic-hard-sphere system in Fig.
5�b�. The symbols represent the results of the simulations,
and the line is the Carnahan-Starling equation of state �8� for
the elastic-hard-sphere fluid. With the exception of the high-
est density, the compressibility factor for homogeneously

sheared inelastic spheres is quite similar to that for elastic
hard spheres. The predictions of Enskog theory and Montan-
ero et al. �15� for the pressure �see Fig. 5�a�� agree fairly well
with the simulation data. The main source of the discrepancy
is due to the misprediction of the kinetic contribution to the
pressure.

The shear viscosity of a granular material is perhaps the
most important design parameter in fast flows, quantifying
the power lost per unit volume. The shear viscosity of the
inelastic-hard-sphere system was computed by two means.
The first method is via the definition of the shear viscosity �
for simple Couette flow,

� � −
�Pxy	

�̇
. �12�

An alternative method is to perform an energy balance. The
work of shearing inputs energy into the system. Collisions
between the inelastic spheres continuously dissipate kinetic
energy. At steady state, the average rate of energy input is
equal to the average rate of energy dissipation �49�

��̇2V = − �Ė	 , �13�

where �Ė	 is the average rate of kinetic-energy dissipation.
The rate of energy dissipation is directly related to the mean
time between collisions, tavg, for a sphere by

�Ė	 =
N

2tavg
��E	 ,

where N is the total number of spheres in the system, and
��E	 is the average amount of kinetic energy lost per colli-
sion.

The simulation results for the viscosity of sheared
inelastic-hard-sphere systems are summarized in Table I. The
upper entries are the values obtained from the stress tensor

FIG. 4. The peculiar velocity distributions in the �a� x direction,
�b� y direction, and �c� z direction in sheared inelastic-hard-sphere
systems with �i� ��3=0.4 and �=0.4 �circles�, �ii� ��3=0.9 and �
=0.4 �squares�, �iii� ��3=0.4 and �=0.9 �diamonds�, and �iv� ��3

=0.9 and �=0.9 �triangles�. The solid line is a Gaussian
distribution.

FIG. 5. �a� The dimensionless pressures p� /m�̇2 and �b� the
compressibility factors Z for inelastic-hard-sphere systems with �i�
�=0.4 �circles�, �ii� �=0.5 �squares�, �iii� �=0.6 �diamonds�, �iv�
�=0.7 �up triangles�, �v� �=0.8 �left triangles�, and �vi� �=0.9
�down triangles�. The uncertainty is smaller than the symbol size.
The dotted lines are the suggested expressions of Ref. �15�, and the
solid lines are DSMC results. The solid line in �b� is the Carnahan-
Starling equation of state for elastic-hard-sphere fluids, and the dot-
ted lines are DSMC results for various �.
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�see Eq. �11��, and the lower entries are the values obtained
from the dissipation of kinetic energy �see Eq. �13��. For all
the simulation runs, the two agree within the statistical un-
certainties of the simulations. Figure 6�a� shows the depen-
dence of the shear viscosity on the reduced density of the
system, for various values of the coefficient of restitution.
The viscosity increases with packing fraction and coefficient
of restitution �remembering that the shear rate is equal to 1�.
The theory of Montanero et al. �15� captures the full Enskog
behavior and predicts the viscosity well. Enskog theory de-
viates at low values of � and high densities where the pre-
dictions for the temperature begin to deviate from the simu-
lation results �see Fig. 2�.

In addition to the shear viscosity, we also monitor the
in-plane normal stress coefficient �− and the out-of-plane

normal stress coefficient �0, which are defined as �36�

�− = −
1

2�̇
��Pxx	 − �Pyy	� ,

�0 = −
1

2�̇

�Pzz	 −

1

2
��Pxx	 + �Pyy	�� .

The in-plane normal stress coefficient is plotted in Fig. 6�b�,
and the out-of-plane normal stress coefficient is plotted in
Fig. 6�c�. The simulation values deviate significantly from
the predictions of Enskog theory. However, this is unsurpris-
ing as the velocity-dispersion predictions deviate signifi-
cantly from the simulation results �see Fig. 3�.

C. Collision statistics

In this section, we examine the statistics of the collisions
experienced by the spheres. The mean time between colli-
sion, tavg, provides a characteristic time scale for the sheared
inelastic-hard-sphere system. Figure 7 shows the variation in
the mean time between collisions with the density of the
system at various values of the coefficient of restitution. The
time between collision decreases with increasing density,
which is expected. Increasing the coefficient of restitution
decreases the mean time between collision. The variation in
tavg with the coefficient of restitution is given in the inset of
Fig. 7. At densities roughly below ��3=0.6, the mean time
between collision decreases monotonically with increasing
values of the coefficient of restitution. However, at higher
densities, there is a maximum in tavg. The Enskog theory
results describe the results qualitatively well for low-density
systems but fail at high densities.

For an elastic fluid, the velocities of different particles are,
in general, uncorrelated. Consequently, the velocity statistics

TABLE I. Dimensionless viscosities �� /m�̇ of sheared inelastic-hard-sphere systems at various densities
� and coefficients of restitution �. The upper value is determined from the stress tensor �see Eq. �11��, and the
lower value is determined from the kinetic-energy dissipation rate �see Eq. �13��. The value in brackets is the
standard deviation over all of the runs.

��3

�

0.4 0.5 0.6 0.7 0.8 0.9

0.4 0.1054�0.0003� 0.1294�0.0004� 0.1625�0.0006� 0.2134�0.0005� 0.2970�0.0004� 0.480�0.002�
0.1054�0.0003� 0.1294�0.0004� 0.1625�0.0006� 0.2134�0.0005� 0.2969�0.0004� 0.480�0.002�

0.5 0.1300�0.0003� 0.1582�0.0002� 0.1979�0.0007� 0.2585�0.0003� 0.361�0.001� 0.583�0.002�
0.1300�0.0003� 0.1582�0.0002� 0.1979�0.0007� 0.2585�0.0003� 0.361�0.001� 0.583�0.001�

0.6 0.1722�0.0005� 0.2078�0.0003� 0.2606�0.0007� 0.3416�0.0009� 0.4785�0.0005� 0.779�0.006�
0.1722�0.0005� 0.2078�0.0003� 0.2606�0.0007� 0.3417�0.0009� 0.4785�0.0007� 0.779�0.007�

0.7 0.2445�0.0004� 0.2909�0.0008� 0.364�0.001� 0.4801�0.0008� 0.677�0.002� 1.117�0.005�
0.2446�0.0003� 0.2909�0.0008� 0.364�0.001� 0.4801�0.0009� 0.677�0.002� 1.117�0.005�

0.8 0.371�0.001� 0.4375�0.0002� 0.545�0.001� 0.716�0.003� 1.020�0.002� 1.722�0.008�
0.371�0.001� 0.4375�0.0002� 0.545�0.001� 0.716�0.003� 1.020�0.002� 1.722�0.008�

0.9 0.643�0.007� 0.731�0.001� 0.885�0.002� 1.141�0.004� 1.64�0.01� 2.86�0.01�
0.643�0.008� 0.731�0.002� 0.885�0.002� 1.141�0.004� 1.64�0.01� 2.856�0.010�

1.0 1.42�0.01� 1.52�0.02� 1.73�0.02� 2.15�0.03� 3.01�0.03� 5.30�0.04�
1.42�0.01� 1.52�0.02� 1.73�0.02� 2.15�0.03� 3.01�0.04� 5.30�0.03�

FIG. 6. The viscosities for a homogeneously sheared inelastic-
hard-sphere system with �i� �=0.4 �circles�, �ii� �=0.5 �squares�,
�iii� �=0.6 �diamonds�, �iv� �=0.7 �up triangles�, �v� �=0.8 �left
triangles�, and �vi� �=0.9 �down triangles�. The dotted lines are the
suggested expressions of Ref. �15�, and the solid lines are DSMC
results.
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of the individual collisions can be determined exactly. On the
other hand, the particle velocities in a driven granular system
can be strongly correlated, and their on-collision statistics are
not exactly known.

The distribution of the angle � between the relative veloc-
ity and the relative position of two spheres on collision
�cos �=rij ·vij / �rij��vij�� is given in Fig. 8. The solid line de-
notes an isotropic collision distribution �as is the case for
elastic-hard-sphere systems�. The symbols are the simulation
data for sheared inelastic hard spheres, and the solid line is
the DSMC result for ��3=0.9 and �=0.4. For weakly inelas-
tic systems, the distribution of the collisional angle is close
to that for the elastic-hard-sphere system. As the inelasticity
and density of the particles increases, however, there is a
gradual increase in the frequency of “glancing” collisions
�where cos � is near 0� at the expense of more “head-on”

collisions �where cos � is close to −1�. This is in agreement
with the two-dimensional shearing simulation of Tan and
Goldhirsch �32� and Campbell and Brennen �3�. The Enskog
theory does not capture this effect, as the DSMC simulations
only display a small increased bias toward glancing colli-
sions even in the dense, highly inelastic system.

The increase in glancing collisions for strongly inelastic
systems �see Fig. 8� results primarily from collisions be-
tween pairs of particles orientated in the x-y plane. This oc-
curs when the change in the streaming velocity over the di-
ameter of a particle becomes significant in comparison to the
average relative peculiar velocity �21�. Particles separated in
the y plane then have a significantly increased relative veloc-
ity, which increases their probability of collision. Both the
DSMC and granular-dynamics simulation results support
this. However, DSMC does not exhibit the large increase in
collisions with a very large collision angle.

In the inelastic-hard-sphere system, every collision results
in a loss of kinetic energy. The simulation results for the
distribution of the loss of kinetic energy on collision are
given in Fig. 9. If the velocity distribution of the spheres
were Gaussian �e.g., Maxwell-Boltzmann distribution�, then
the kinetic-energy loss on collision would be distributed ac-
cording to a Poisson distribution:

f��E� =
1

��E	
exp�−

�E

��E	
 .

This is given by the solid line in Fig. 9. At high values of �,
the distribution of the change in kinetic energy on collision is
nearly exponential. For these systems, density does not sig-
nificantly affect the results.

As � decreases, there is a greater frequency of collisions
that results in a very slight loss of kinetic energy �i.e., the
initial peak in Fig. 9�. This corresponds to the increase in the
glancing collisions in the systems. This enhancement of rela-
tively elastic collisions is accompanied by an increase in col-

FIG. 7. Mean times between collisions for sheared inelastic hard
spheres with �i� �=0.4 �circles�, �ii� �=0.5 �squares�, �iii� �=0.6
�diamonds�, �iv� �=0.7 �up triangles�, �v� �=0.8 �left triangles�,
and �vi� �=0.9 �down triangles�. Inset: variations in the mean time
between collisions with the coefficient of restitution for �i� ��3

=1.0 �circles�, �ii� ��3=0.9 �squares�, �iii� ��3=0.8 �diamonds�,
�iv� ��3=0.7 �up triangles�, �v� ��3=0.6 �left triangles�, �vi� ��3

=0.5 �down triangles�, and �vii� ��3=0.4 �right triangles�. The solid
lines are the DSMC simulation results.

FIG. 8. The distributions of collisional angles for �i� ��3=0.4
and �=0.4 �circles�, �ii� ��3=0.8 and �=0.4 �left triangles�, �ii�
��3=0.9 and �=0.4 �squares�, �iii� ��3=0.4 and �=0.9 �dia-
monds�, and �iv� ��3=0.9 and �=0.9 �up triangles�. The dashed
line is for elastic hard spheres and the solid line is from a DSMC
simulation of ��3=0.9 and �=0.4.

FIG. 9. The changes in kinetic energy on collision for sheared
inelastic-hard-sphere systems with �i� ��3=0.4 and �=0.4 �circles�,
�ii� ��3=0.9 and �=0.4 �squares�, �iii� ��3=0.4 and �=0.9 �dia-
monds�, and �iv� ��3=0.9 and �=0.9 �triangles�. The dashed line
represents the kinetic-energy loss on collision if the velocity were
given by the Maxwell-Boltzmann distribution, and the solid line is
from a DSMC simulation at ��3=0.9 and �=0.4. The inset high-
lights the frequency of collisions that result in low-energy losses.
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lisions that results in large losses of kinetic energy �i.e., the
long tail in Fig. 9�. These result from head-on collisions,
which occur between particles oriented primarily in the x
direction where the velocity dispersion is the greatest. While
these head-on collisions occur less frequently than glancing
collisions in the highly inelastic systems, they are more vio-
lent. Increasing the density enhances these effects.

Thus far, we have only studied the statistics of single
collisions. One common assumption in many kinetic theories
is that the individual collisions experienced by a particle are
statistically independent. We now study the correlation be-
tween collisions by examining the time required for a par-
ticle to undergo a number of collisions. If the various colli-
sions experienced by a particle can be considered to arrive at
random times in an independent manner, then the time t re-
quired for a particle to undergo n collisions is given by a
Poisson process. The probability density function pn�t� that a
particle experiences n collisions in a period of time t is

pn�t� =
�t/tavg�n−1

tavg��n�
exp�−

t

tavg
 , �14�

where ��n� is the gamma function. Deviations from this dis-
tribution are an indication of correlations between collisions.
For elastic-hard-sphere fluids, the Poisson process describes
the collision time distribution fairly well. However, there are
noticeable deviations, even at low densities, which increase
with increasing density �50–52�.

The collision time distributions for homogeneously
sheared inelastic-hard-sphere systems are shown in Fig. 10.
The solid lines denote the Poisson distribution, given by Eq.
�14�. At high values of the coefficient of restitution, the dis-
tributions are similar to those of elastic hard spheres and are
fairly well described by a Poisson process. As the coefficient
of restitution decreases, however, the simulation data deviate
significantly from the Poisson process, indicating very strong
correlations between collisions. Qualitatively, the deviations
are similar to that observed for elastic-hard-sphere systems:
there is an enhancement of very short and very long wait
times between collisions. However, these differences are

much more pronounced for the inelastic-hard-sphere sys-
tems.

V. CONCLUSIONS

We have performed nonequilibrium molecular-dynamics
simulations of sheared inelastic-hard-sphere systems using
the Sllod algorithm combined with Lees-Edwards boundary
conditions. In these simulations, care was taken to ensure
that the systems remain homogeneous and the shear was uni-
form across the system. As a consequence, these simulations
may prove a useful reference to compare with the predictions
of kinetic theory.

DSMC simulations of the Enskog equation were per-
formed to provide a solution to the kinetic theory without
further approximation. These compared favorably with the
simulation results except for dense, strongly inelastic sys-
tems. The velocity-anisotropy effect can be very strong even
in homogeneous systems, and kinetic-theory solutions must
take this into account in their approximations.

Results were presented for the velocity statistics of indi-
vidual particles in the system. The velocity distributions
were, in general, well described by an anisotropic Gaussian.
Theories based on the anisotropic Gaussian and the full sec-
ond moment balance �e.g., see Ref. �53�� are well suited to
these systems. Sheared inelastic-hard-sphere systems do not
obey the equipartition theorem. Fluctuations of the velocity
in the x direction �the direction of shear� were greater than
those in the y and z directions, which were both similar to
each other. In addition, the granular temperature, which char-
acterizes the overall fluctuation of the velocity, was observed
to possess a minimum with respect to the density. This mini-
mum becomes more pronounced as the coefficient of restitu-
tion of the spheres decreases.

The variation in the stress in the system was also exam-
ined. The compressibility factor of the sheared inelastic-
hard-sphere system was quite similar to that of elastic hard
spheres, as estimated by the Carnahan-Starling equation of
state. The shear viscosity of the systems was computed in
two different manners: from the average of the stress tensor
and from the rate of dissipation of kinetic energy. The values
of the viscosity from both these methods agree to within the
statistical uncertainty of the simulations. The predictions of
the Enskog equation and the kinetic theory of Montanero et
al. �15� were in fairly good agreement with the simulation
data. The in-plane and out-of-plane stress coefficients were
also computed, but the kinetic-theory predictions for these
quantities were not as accurate.

Finally, the collision statistics of particles in the sheared
inelastic-hard-sphere system was studied. The mean time be-
tween collisions was found to decrease monotonically with
increasing density. However, at fixed density, it displays a
maximum at intermediate values of the coefficient of restitu-
tion. Examination of the collision time distributions indi-
cated the presence of strong correlations between collisions.
Including these correlations within a kinetic theory will be
important in developing an accurate description of high-
density, sheared inelastic-hard-sphere systems.

FIG. 10. Distributions of time between �a� one collision, �b� five
collisions, and �c� ten collisions in sheared inelastic hard spheres
with �i� ��3=0.4 and �=0.4 �circles�, �ii� ��3=0.9 and �=0.4
�squares�, �iii� ��3=0.4 and �=0.9 �diamonds�, and �iv� ��3=0.9
and �=0.9 �triangles�. The solid line is for a Poisson process.
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